A Study of Dictionary Based Korean Semantic Role Labeling
نویسندگان
چکیده
منابع مشابه
Forest-Based Semantic Role Labeling
Parsing plays an important role in semantic role labeling (SRL) because most SRL systems infer semantic relations from 1-best parses. Therefore, parsing errors inevitably lead to labeling mistakes. To alleviate this problem, we propose to use packed forest, which compactly encodes all parses for a sentence. We design an algorithm to exploit exponentially many parses to learn semantic relations ...
متن کاملconstruction and validation of a computerized adaptive translation test (a receptive based study)
آزمون انطباقی رایانه ای (cat) روشی نوین برای سنجش سطح علمی دانش آموزان می باشد. در حقیقت آزمون های رایانه ای با سرعت بالایی به سمت و سوی جایگزین عملی برای آزمون های کاغذی می روند (کینگزبری، هاوسر، 1993). مقاله حاضر به دنبال آزمون انطباقی رایانه ای برای ترجمه می باشد. بدین منظور دو پرسشنامه مشتمل بر 55 تست ترجمه میان 102 آزمودنی و 10 مدرس زبان انگلیسی پخش گردید. پرسشنامه اول میان 102 دانشجوی س...
Dependency-based Semantic Role Labeling of PropBank
We present a PropBank semantic role labeling system for English that is integrated with a dependency parser. To tackle the problem of joint syntactic–semantic analysis, the system relies on a syntactic and a semantic subcomponent. The syntactic model is a projective parser using pseudo-projective transformations, and the semantic model uses global inference mechanisms on top of a pipeline of cl...
متن کاملSemantic Role Labeling Based Event Argument Identification
Event extraction is one of the most challenging tasks of information extraction from text. This paper studies one of the stages of Chinese event extraction, namely, event argument identification. A new method we call Semantic Role Labeling Based Event Argument Identification, based on the state-of-the-art methods of event extraction and event argument identification, is proposed. First, the 5W1...
متن کاملSemantic Role Labeling via Instance-Based Learning
This paper demonstrates two methods to improve the performance of instancebased learning (IBL) algorithms for the problem of Semantic Role Labeling (SRL). Two IBL algorithms are utilized: k-Nearest Neighbor (kNN), and Priority Maximum Likelihood (PML) with a modified back-off combination method. The experimental data are the WSJ23 and Brown Corpus test sets from the CoNLL2005 Shared Task. It is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Database Theory and Application
سال: 2017
ISSN: 2005-4270,2005-4270
DOI: 10.14257/ijdta.2017.10.7.06